Files 32463 0909-Khine-B X600
A children’s toy inspires a cheap, easy production method for high-tech diagnostic chips (Michelle Khine tR35 winner)… Microfluidic chips cost more than $100,000 –

Racking her brain for a quick-and-dirty way to make microfluidic devices, Khine remembered her favorite childhood toy: Shrinky Dinks, large sheets of thin plastic that can be colored with paint or ink and then shrunk in a hot oven. “I thought if I could print out the [designs] at a certain resolution and then make them shrink, I could make channels the right size for micro­fluidics,” she says.

To test her idea, she whipped up a channel design in AutoCAD, printed it out on Shrinky Dink material using a laser printer, and stuck the result in a toaster oven. As the plastic shrank, the ink particles on its surface clumped together, forming tiny ridges. That was exactly the effect Khine wanted. When she poured a flexible polymer known as PDMS onto the surface of the cooled Shrinky Dink, the ink ridges created tiny channels in the surface of the polymer as it hardened. She pulled the PDMS away from the Shrinky Dink mold, and voilà: a finished microfluidic device that cost less than a fast-food meal.

Khine began using the chips in her experiments, but she didn’t view her toaster-oven hack as a breakthrough right away. “I thought it would be something to hold me over until we got the proper equipment in place,” she says. But when she published a short paper about her technique, she was floored by the response she got from scientists all over the world. “I had no idea people were going to be so interested,” Khine says.