Find all your DIY electronics in the MakerShed. 3D Printing, Kits, Arduino, Raspberry Pi, Books & more!

By George Hart for the Museum of Mathematics

Math_Monday_banner02_600px.jpg

A pentomino is like a domino, but with five connected squares instead of two. There are twelve ways to connect squares edge-to-edge in the plane, not counting rotations and flips. A set of all twelve can be cut from scraps of plywood using any kind of saw. Large sets are fun to play with, so I based these on three inch squares. It is made from half-inch plywood, cut on a band saw and lightly sanded.

As the area of all twelve pieces totals sixty squares, a natural puzzle is to try to fill a 6×10 rectangle. There are over 2000 solutions! But even though you are allowed to flip and rotate the pieces however you wish, it is harder to solve than you might think.

The 5×12 rectangle above is another challenging puzzle to try once you make your set. This one is three feet across.

You can also make a 4×15 rectangle, as shown above. And the same twelve pentominoes can make the 3×20 rectangle, below, which is five feet long.

It is interesting that as we consider longer, skinnier rectangles, the number of possible solutions is drastically reduced. These four rectangles have 2339, 1010, 368, and 2 solutions, respectively.

More:
See all of George Hart’s Math Monday columns

Gareth Branwyn

Gareth Branwyn is a freelancer writer and the former Editorial Director of Maker Media. He is the author or editor of a dozen books on technology, DIY, and geek culture, including the first book about the web (Mosaic Quick Tour) and the Absolute Beginner’s Guide to Building Robots. He is currently working on a best-of collection of his writing, called Borg Like Me.


Related
blog comments powered by Disqus

Featured Products from the MakerShed