// Basic MIDI Controller code for reading all of the Arduino's digital and analogue inputs // and sending them as MIDI messages to the host PC. // // Authors: Michael Balzer // Teensy USB-MIDI edit: Tim Crawford // Updates for button bar: Paul Sijben // Revision History: // Date | Author | Change // --------------------------------------------------- // 2011-02-22 | MSB | Initial Release // 2011-03-01 | MSB | Updated MIDI output to send same MIDI signals as official MIDI Fighter // | | Reduced debounce length from 5ms to 2ms // 2011-03-14 | MSB | Modified analogue input logic so only pins moved within the timer // | | period are updated, not all of them. // | | Experimental code added for higher speed (but less accurate) analogue reads // | | Reduced analogue timer length from 1000ms to 250ms // 2011-03-21 | MSB | Removed TimerOne library. Each analogue pin now maintains its own time // | | since it was last moved, rather than one timer for all pins. This stops // | | sending jittery movements on analogue inputs which haven't been touched. // 2011-04-11 | TC | Teensy USB code added. // | MSB | Updated with #defines for Arduino Mega and Teensy USB for easy compilation // 2011-10-23 | MSB | Added default #defines for Teensy 2.0 and Teensy++ 2.0 digital pins // | | Removed #defines for Teensy 1.0 as usbMIDI is not supported // 2012-01-20 | MSB | Updated to support Arduino 1.0 (updated Serial.print to Serial.write) // 2016-04-10 | PS | removed analogue inputs and updated midi transfer rate for maximum compatibility, also moved to pull-up resistors // // This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. // See http://creativecommons.org/licenses/by-nc-sa/3.0/ for license details. #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #define ARDUINO_MEGA #elif defined(__AVR_AT90USB646__) #define TEENSY_PLUS_PLUS #elif defined(__AVR_ATmega32U4__) #define TEENSY_2 #elif defined(__AVR_AT90USB1286__) #define TEENSY_PLUS_PLUS_2 #else #define ARDUINO #endif // Uncomment this line to send debug messages to the serial monitor // #define DEBUG // Uncomment this line to enable outputs corresponding to the MIDI Fighter so MF mappings can be used in Traktor. //#define MIDI_FIGHTER //#define FASTADC // defines for setting and clearing register bits #ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif #ifndef sbi #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #endif // MIDI mapping taken from http://www.nortonmusic.com/midi_cc.html #define MIDI_CC_MODULATION 0x01 #define MIDI_CC_BREATH 0x02 #define MIDI_CC_VOLUME 0x07 #define MIDI_CC_BALANCE 0x08 #define MIDI_CC_PAN 0x0A #define MIDI_CC_EXPRESSION 0x0B #define MIDI_CC_EFFECT1 0x0C #define MIDI_CC_EFFECT2 0x0D #define MIDI_CC_GENERAL1 0x0E #define MIDI_CC_GENERAL2 0x0F #define MIDI_CC_GENERAL3 0x10 #define MIDI_CC_GENERAL4 0x11 #define MIDI_CC_GENERAL5 0x12 #define MIDI_CC_GENERAL6 0x13 #define MIDI_CC_GENERAL7 0x14 #define MIDI_CC_GENERAL8 0x15 #define MIDI_CC_GENERAL9 0x16 #define MIDI_CC_GENERAL10 0x17 #define MIDI_CC_GENERAL11 0x18 #define MIDI_CC_GENERAL12 0x19 #define MIDI_CC_GENERAL13 0x1A #define MIDI_CC_GENERAL14 0x1B #define MIDI_CC_GENERAL15 0x1C #define MIDI_CC_GENERAL16 0x1D #define MIDI_CC_GENERAL17 0x1E #define MIDI_CC_GENERAL18 0x1F #define MIDI_CC_GENERAL1_FINE 0x2E #define MIDI_CC_GENERAL2_FINE 0x2F #define MIDI_CC_GENERAL3_FINE 0x30 #define MIDI_CC_GENERAL4_FINE 0x31 #define MIDI_CC_GENERAL5_FINE 0x32 #define MIDI_CC_GENERAL6_FINE 0x33 #define MIDI_CC_GENERAL7_FINE 0x34 #define MIDI_CC_GENERAL8_FINE 0x35 #define MIDI_CC_GENERAL9_FINE 0x36 #define MIDI_CC_GENERAL10_FINE 0x37 #define MIDI_CC_GENERAL11_FINE 0x38 #define MIDI_CC_GENERAL12_FINE 0x39 #define MIDI_CC_GENERAL13_FINE 0x3A #define MIDI_CC_GENERAL14_FINE 0x3B #define MIDI_CC_GENERAL15_FINE 0x3C #define MIDI_CC_GENERAL16_FINE 0x3D #define MIDI_CC_GENERAL17_FINE 0x3E #define MIDI_CC_GENERAL18_FINE 0x3F #define MIDI_CC_SUSTAIN 0x40 #define MIDI_CC_REVERB 0x5B #define MIDI_CC_CHORUS 0x5D #define MIDI_CC_CONTROL_OFF 0x79 #define MIDI_CC_NOTES_OFF 0x78 #define NOTE_C0 0x00 // 0 #define NOTE_C1 0x12 // 18 #define NOTE_C2 0x24 // 36 #if defined(ARDUINO_MEGA) // Number of digital inputs. Can be anywhere from 0 to 68. #define NUM_DI 52 // Number of analogue inputs. Can be anywhere from 0 to 16. #define NUM_AI 16 #elif defined(TEENSY_PLUS_PLUS) // Number of digital inputs. Can be anywhere from 0 to 46. #define NUM_DI 38 // Number of analogue inputs. Can be anywhere from 0 to 8. #define NUM_AI 8 #elif defined(TEENSY_2) // Number of digital inputs. Can be anywhere from 0 to 25. #define NUM_DI 13 // Number of analogue inputs. Can be anywhere from 0 to 12. #define NUM_AI 12 #elif defined(TEENSY_PLUS_PLUS_2) // Number of digital inputs. Can be anywhere from 0 to 46. #define NUM_DI 38 // Number of analogue inputs. Can be anywhere from 0 to 8. #define NUM_AI 8 #else // Number of digital inputs. Can be anywhere from 0 to 18. #define NUM_DI 12 // Number of analogue inputs. Can be anywhere from 0 to 6. #define NUM_AI 6 #endif #if defined(MIDI_FIGHTER) && defined(ARDUINO) #define MIDI_CHANNEL 3 // First note, starting from lower left button #define NOTE NOTE_C2 // When mapping to a MIDI Fighter we need to skip a row of buttons. Set this from 0-3 to define which row to skip. // Rows are ordered from bottom to top (same as the MIDI Fighter's button layout). #define SKIP_ROW 2 // This pin order corresponds to the bottom left button being zero, increasing by one as we move from left to right, bottom to top // 8 9 10 11 // 4 5 6 7 // 0 1 2 3 // This array size must match NUM_DI above. #define DIGITAL_PIN_ORDER 10, 11, 12, 13, 6, 7, 8, 9, 2, 3, 4, 5 #else #define MIDI_CHANNEL 1 // First note, starting from upper left button #define NOTE NOTE_C0 // This pin order corresponds to the top left button being zero, increasing by one as we move from left to right, top to bottom // 0 1 2 3 // 4 5 6 7 // 8 9 10 11 // This array size must match NUM_DI above. #if defined(ARDUINO_MEGA) #define DIGITAL_PIN_ORDER 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53 #elif defined(TEENSY_PLUS_PLUS) #define DIGITAL_PIN_ORDER 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 #elif defined(TEENSY_2) #define DIGITAL_PIN_ORDER 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 #elif defined(TEENSY_PLUS_PLUS_2) #define DIGITAL_PIN_ORDER 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 #else #define DIGITAL_PIN_ORDER 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 #endif #endif #if defined(ARDUINO_MEGA) #define ANALOGUE_PIN_ORDER A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15 #elif defined(TEENSY_PLUS_PLUS) #define ANALOGUE_PIN_ORDER 0, 1, 2, 3, 4, 5, 6, 7 #elif defined(TEENSY_2) #define ANALOGUE_PIN_ORDER 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 #elif defined(TEENSY_PLUS_PLUS_2) #define ANALOGUE_PIN_ORDER 0, 1, 2, 3, 4, 5, 6, 7 #else #define ANALOGUE_PIN_ORDER A0, A1, A2, A3, A4, A5 #endif #if defined(TEENSY_PLUS_PLUS) || defined(TEENSY_2) || defined(TEENSY_PLUS_PLUS_2) #define LED_PIN PIN_D6 #else #define LED_PIN 13 #endif #define MIDI_CC MIDI_CC_GENERAL1 // Comment this line out to disable button debounce logic. // See http://arduino.cc/en/Tutorial/Debounce on what debouncing is used for. #define DEBOUNCE // Debounce time length in milliseconds #define DEBOUNCE_LENGTH 2 #define LONG_PRESS_MS 1000 // Comment this line out to disable analogue filtering #define ANALOGUE_FILTER // A knob or slider movement must initially exceed this value to be recognised as an input. Note that it is // for a 7-bit (0-127) MIDI value. #ifdef FASTADC #define FILTER_AMOUNT 3 #else #define FILTER_AMOUNT 2 #endif // Timeout is in microseconds #define ANALOGUE_INPUT_CHANGE_TIMEOUT 250000 // Array containing a mapping of digital pins to channel index. byte digitalInputMapping[NUM_DI] = {DIGITAL_PIN_ORDER}; // Array containing a mapping of analogue pins to channel index. This array size must match NUM_AI above. byte analogueInputMapping[NUM_AI] = {ANALOGUE_PIN_ORDER}; // Contains the current state of the digital inputs. byte digitalInputs[NUM_DI]; // Contains the current value of the analogue inputs. byte analogueInputs[NUM_AI]; // Variable to hold temporary digital reads, used for debounce logic. byte tempDigitalInput; // Variable to hold temporary analogue values, used for analogue filtering logic. byte tempAnalogueInput; // Preallocate the for loop index so we don't keep reallocating it for every program iteration. byte i = 0; byte digitalOffset = 0; // Variable to hold difference between current and new analogue input values. byte analogueDiff = 0; // This is used as a flag to indicate that an analogue input is changing. boolean analogueInputChanging[NUM_AI]; // Time the analogue input was last moved unsigned long analogueInputTimer[NUM_AI]; #ifdef DEBUG unsigned long loopTime = 0; unsigned long serialSendTime = 0; #endif void setup() { // Taken from http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1208715493/11 #ifdef FASTADC // set prescale to 16 sbi(ADCSRA,ADPS2) ; cbi(ADCSRA,ADPS1) ; cbi(ADCSRA,ADPS0) ; #endif // Only enable serial on the Arduino or when debugging. The Teensy board should be set as a usb-midi device so serial is not needed. #if defined(ARDUINO) || defined(ARDUINO_MEGA) || defined(DEBUG) // Enable serial I/O at 115200 kbps. This is faster than the standard MIDI rate of 31250 kbps. // The PC application which we connect to will automatically take the higher sample rate and send MIDI // messages out at the correct rate. We only send things faster in case there is any latency. Serial.begin(31250); #endif // Initialise each digital input channel. for (i = 0; i < NUM_DI; i++) { // Set the pin direction to input. pinMode(digitalInputMapping[i], INPUT); // Don't enable pullup resistor on LED_PIN, as the LED and resistor will always pull it low, meaning the input won't work. // Instead an external pulldown resistor must be used on LED_PIN. // NOTE: This will cause all of the high/low logic for LED_PIN to be inverted. if (digitalInputMapping[i] != LED_PIN) { // Enable the pull-up resistor. This call must come after the above pinMode call. digitalWrite(digitalInputMapping[i], HIGH); } // Initialise the digital state with a read to the input pin. digitalInputs[i] = digitalRead(digitalInputMapping[i]); } #ifdef DEBUG serialSendTime = millis(); #endif } void loop() { #ifdef DEBUG loopTime = micros(); #endif for (i = 0; i < NUM_DI; i++) { #ifdef MIDI_FIGHTER if (i >= SKIP_ROW * 4) { digitalOffset = i + 4; } else { #endif digitalOffset = i; #ifdef MIDI_FIGHTER } #endif // Read the current state of the digital input and store it temporarily. tempDigitalInput = digitalRead(digitalInputMapping[i]); // Check if the last state is different to the current state. if (digitalInputs[i] != tempDigitalInput) { #ifdef DEBOUNCE // Wait for a short period of time, and then take a second reading from the input pin. delay(DEBOUNCE_LENGTH); // If the second reading is the same as the initial reading, assume it must be true. if (tempDigitalInput == digitalRead(digitalInputMapping[i])) { #endif // Record the new digital input state. digitalInputs[i] = tempDigitalInput; // Moved from LOW to HIGH (button pressed) if (digitalInputs[i] == 1) { // All the digital inputs use pullup resistors, except LED_PIN so the logic is inverted if (digitalInputMapping[i] != LED_PIN) { noteOn(MIDI_CHANNEL, NOTE + digitalOffset, 0x7F); // Channel 1, middle C, maximum velocity } else { noteOff(MIDI_CHANNEL, NOTE + digitalOffset); // Channel 1, middle C } } // Moved from LOW to HIGH (button released) else { // All the digital inputs use pullup resistors, except LED_PIN so the logic is inverted if (digitalInputMapping[i] != LED_PIN) { noteOff(MIDI_CHANNEL, NOTE + digitalOffset); // Channel 1, middle C } else { noteOn(MIDI_CHANNEL, NOTE + digitalOffset, 0x7F); // Channel 1, middle C, maximum velocity } } #ifdef DEBOUNCE } #endif } } #ifdef DEBUG loopTime = micros() - loopTime; // Print the loop execution time once per second if (millis() - serialSendTime > 1000) { Serial.print("Loop execution time (us): "); Serial.println(loopTime); serialSendTime = millis(); } #endif } // Send a MIDI note on message void noteOn(byte channel, byte pitch, byte velocity) { // 0x90 is the first of 16 note on channels. Subtract one to go from MIDI's 1-16 channels to 0-15 channel += 0x90 - 1; // Ensure we're between channels 1 and 16 for a note on message if (channel >= 0x90 && channel <= 0x9F) { #ifdef DEBUG Serial.print("Button pressed: "); Serial.println(pitch); #elif defined(TEENSY_PLUS_PLUS) || defined(TEENSY_2) || defined(TEENSY_PLUS_PLUS_2) usbMIDI.sendNoteOn(pitch, velocity, channel); #else Serial.write(channel); Serial.write(pitch); Serial.write(velocity); #endif } } // Send a MIDI note off message void noteOff(byte channel, byte pitch) { // 0x80 is the first of 16 note off channels. Subtract one to go from MIDI's 1-16 channels to 0-15 channel += 0x80 - 1; // Ensure we're between channels 1 and 16 for a note off message if (channel >= 0x80 && channel <= 0x8F) { #ifdef DEBUG Serial.print("Button released: "); Serial.println(pitch); #elif defined(TEENSY_PLUS_PLUS) || defined(TEENSY_2) || defined(TEENSY_PLUS_PLUS_2) usbMIDI.sendNoteOff(pitch, 0x00, channel); #else Serial.write(channel); Serial.write(pitch); Serial.write((byte)0x00); #endif } } // Send a MIDI control change message void controlChange(byte channel, byte control, byte value) { // 0xB0 is the first of 16 control change channels. Subtract one to go from MIDI's 1-16 channels to 0-15 channel += 0xB0 - 1; // Ensure we're between channels 1 and 16 for a CC message if (channel >= 0xB0 && channel <= 0xBF) { #ifdef DEBUG Serial.print(control - MIDI_CC); Serial.print(": "); Serial.println(value); #elif defined(TEENSY_PLUS_PLUS) || defined(TEENSY_2) || defined(TEENSY_PLUS_PLUS_2) usbMIDI.sendControlChange(control, value, channel); #else Serial.write(channel); Serial.write(control); Serial.write(value); #endif } }