By George Hart for the Museum of Mathematics
A mathematical haircut makes an unambiguous statement to the world that you love math. Here, Nick Sayers is sporting a rhombic coiffure with interesting geometric properties.
The obtuse angles of each rhombus meet in groups of three, but the acute angles meet in groups of five, six, or seven, depending on the curvature. In the flatter areas, they meet in groups of six, like equilateral triangles, and in the areas of strong positive curvature they meet in groups of five, but in the negatively curved saddle at the back of the neck, there is a group of seven.
To make your own, Nick suggests you use a rhombic paper template starting at the crown, work outwards, and make aesthetic decisions about the 5-, 6-, or 7-way joints depending on local curvature. This instance of the design was cut by Hannah Barker after a test version a couple of months earlier by Summer Makepeace.
ADVERTISEMENT