Math Monday: Try a Torus

Art & Sculpture Craft & Design Science
Math Monday: Try a Torus

By Glen Whitney for the Museum of Mathematics

Math_Monday_banner02_600px.jpg

Just suppose you wanted to make your own model of the Ungar-Leech map on the surface of a torus, like this one created by Norton Starr in 1972:


You’d probably want to start by making a torus. Suppose you didn’t happen to have access to a FabLab or a Modela MDX milling machine, so that you couldn’t follow these instructions to produce a wooden torus like this one:

torus

What could you do? Well, you could try making a plaster mold of a torus, as in the following detailed video showing the entire process from start to finish:

YouTube player

And if you do make a torus in this way, you really might want to paint it with the Ungar-Leech map shown above. Why? Because that map shows that unlike on a sphere, where any map can be colored with four colors, it takes at least seven colors to color certain maps on a torus. In particular, the Ungar-Leech map divides the torus into seven congruent regions, each of which touches all of the other six. So there’s no way to color it with fewer than seven colors.

What will the next generation of Make: look like? We’re inviting you to shape the future by investing in Make:. By becoming an investor, you help decide what’s next. The future of Make: is in your hands. Learn More.

Tagged

Gareth Branwyn is a freelance writer and the former Editorial Director of Maker Media. He is the author or editor of over a dozen books on technology, DIY, and geek culture. He is currently a contributor to Boing Boing, Wink Books, and Wink Fun. His free weekly-ish maker tips newsletter can be found at garstipsandtools.com.

View more articles by Gareth Branwyn
Discuss this article with the rest of the community on our Discord server!

ADVERTISEMENT

Escape to an island of imagination + innovation as Maker Faire Bay Area returns for its 16th iteration!

Prices Increase in....

Days
Hours
Minutes
Seconds
FEEDBACK