
The word transistor, on its own, is often used to mean bipolar transistor, as this was the type that became most widely used in the field of discrete semiconductors. However, bipolar transistor is the correct term. It is sometimes referred to as a bipolar junction transistor or BJT.
What It Does

A bipolar transistor is described as a discrete semiconductor device when it is individually packaged, with three leads or contacts. A package containing multiple transistors is an integrated circuit. A Darlington pair actually contains two transistors, but is included here as a discrete component because it is packaged similarly and functions like a single transistor.
How It Works
Although the earliest transistors were fabricated from germanium, silicon has become the most commonly used material. Silicon behaves like an insulator, in its pure state at room temperature, but can be “doped” (carefully contaminated) with impurities that introduce a surplus of electrons unbonded from individual atoms. The result is an N-type semiconductor that can be induced to allow the movement of electrons through it, if it is biased with an external voltage. Forward bias means the application of a positive voltage, while reverse bias means reversing that voltage.
Other dopants can create a deficit of electrons, which can be thought of as a surplus of “holes” that can be filled by electrons. The result is a P-type semiconductor.

Thus, the emitter of an NPN bipolar transistor emits electrons into the transistor, while the collector collects them from the base and moves them out of the transistor. It is important to remember that since electrons carry a negative charge, the flow of electrons moves from negative to positive. The concept of positive-to-negative current is a fiction that exists only for historical reasons. Nevertheless, the arrow in a transistor schematic symbol points in the direction of conventional (positive-to-negative) current.
In a PNP transistor, a thin N-type layer is sandwiched between two thicker P-type layers, the base is negatively biased relative to the emitter, and the function of an NPN transistor is reversed, as the terms “emitter” and “collector” now refer to the movement of electron-holes rather than electrons. The collector is negative relative to the base, and the resulting positive-to-negative current flow moves from emitter to base to collector. The arrow in the schematic symbol for a PNP transistor still indicates the direction of positive current flow.
Variants
Small signal transistors are defined as having a maximum collector current of 500 mA and maximum collector power dissipation of 1 watt. They can be used for audio amplification of low-level inputs and for switching of small currents. When determining whether a small-signal transistor can control an inductive load such as a motor or relay coil, bear in mind that the initial current surge will be greater than the rated current draw during sustained operation.
Small switching transistors have some overlap in specification with small signal transistors, but generally have a faster response time, lower beta value, and may be more limited in their tolerance for collector current. Check the manufacturerโs datasheet for details.
High frequency transistors are primarily used in video amplifiers and oscillators, are physically small, and have a maximum frequency rating as high as 2,000 MHz.
Power transistors are defined as being capable of handling at least 1 watt, with upper limits that can be as high as 500 watts and 150 amps. They are physically larger than the other types, and may be used in the output stages of audio amplifiers, and in switching power supplies (see the chapter on power supplies in Volume 1). Typically they have a much lower current gain than smaller transistors (20 or 30 as opposed to 100 or more).

Thanks for reading, and we hope you enjoy our Component of the Month coverage!
ADVERTISEMENT



