I’ve traveled around the world creating art with a very unusual medium. I fold air in specially prepared latex containers. That’s right: balloons. At Airigami, we don’t deal with tiny balloon doggies, or even a few balloons forming hats, but massive artistic installations involving up to 100,000 balloons. The same basic twists used to make the standard balloon dog are used for these creations. But with endeavors this large come countless engineering challenges, from forming rigid structures out of light-weight and flexible materials, to constructing safe rigging that will support hundreds of pounds worth of balloons, to calculating gas usage and airflow requirements of inflation equipment. What’s more, the unusual shapes balloons come in make the challenges even greater. Traditional approaches to building don’t necessarily apply when, instead of bricks and 2x4s, your smallest elements are shaped as spheres, rounded-cylinders, and mouse heads. In the movie Raising Arizona, Evelle poses the question, “These blow up into funny shapes and all?” The answer is, “Well, no … unless round is funny.” Indeed, all balloons are funny-shaped when considering their use as a building material.
History
Balloons have been around since at least 1824, when Michael Faraday used rubber balloons in his hydrogen experiments at the Royal Institution in London. Rubber manufacturer Thomas Hancock fabricated balloons as toys the following year, in a DIY kit containing a bottle of rubber solution and a condensing syringe. These versions were affected by temperature, but J.G Ingram’s vulcanized toy balloons in 1847 were not, and are considered the precursor to modern toy balloons.
Tools Needed
Depending on the project and the resources available, balloons are most often filled with air, helium, or nitrogen. Most Airigami projects use air. Everything from small hand pumps, similar to the pumps used to inflate sport balls and bicycle tires, through large air compressors are used.