Sunlight plays huge roles in life as we know it. The red and blue wavelengths of sunlight trigger the photosynthesis that is essential for the growth of plants. The tilt of Earth’s axis causes the seasons: It’s summer in the hemisphere tilted toward the sun and winter in the hemisphere tilted away from the sun.
I’ve been tracking the daily intensity of sunlight at noon since September 1989 using a variety of homemade instruments. While my instruments work well, they require batteries and power switches, both of which eventually need to be replaced. Here we will build the ultra-simple radiometer shown in Figure A that needs no power switch or battery, for it’s powered by the sunlight it measures. This radiometer will teach you much about the daily cycle of sunlight and how it’s modulated by the seasons, clouds, and air pollution.
How It Works
For many years photographers used light meters that employed a selenium photocell connected to an analog meter. The spectral response of selenium closely resembles that of the color response of the human eye. The sunlight sensor for our radiometer is a silicon photodiode, which is actually a miniature solar cell. While its spectral response peaks in the near infrared, it is far more sensitive than selenium photocells. As shown in Figure B, the cathode pin of the photodiode is connected directly to the negative terminal of a 0–1 milliampere (mA) analog panel meter. The anode pin of the photodiode is connected to the positive terminal of the meter through a 550Ω or similar resistor that reduces the peak photodiode’s current to less than 1mA in full sunlight.
While analog panel meters are considered old-fashioned, the one used here is key to the simplicity of the radiometer. Analog meters lack the resolution of digital readouts, and they’re bulkier. Yet analog panel meters have a very long lifetime and other significant advantages over their digital counterparts. In this project the meter requires no battery, because it’s powered by the light sensor. And the swinging needle of a panel meter shows changes and trends that are immediately recognizable, unlike the flickering numbers displayed by a digital readout.
As for reliability, decades ago I built an analog radiometer much like the one described here. Its purpose was to measure the power of the beam emitted by near-infrared LEDs. That instrument works as well today as it did when I built it in 1970, and the version described here should have an equally long life.